"""Implementation of network table parser."""
from __future__ import annotations
import math
from typing import Any
import numpy as np
from pdfminer.layout import LTTextLineHorizontal
from pdfminer.layout import LTTextLineVertical
from ..core import ALL_ALIGNMENTS
from ..core import HORIZONTAL_ALIGNMENTS
from ..core import VERTICAL_ALIGNMENTS
from ..core import TextAlignments
from ..utils import bbox_from_str
from ..utils import bbox_from_textlines
from ..utils import boundaries_to_split_lines
from ..utils import find_columns_boundaries
from ..utils import text_in_bbox
from ..utils import text_in_bbox_per_axis
from ..utils import textlines_overlapping_bbox
from .base import TextBaseParser
# maximum number of columns over which a header can spread
MAX_COL_SPREAD_IN_HEADER = 3
# Minimum number of textlines in a table
MINIMUM_TEXTLINES_IN_TABLE = 6
class TextLine:
"""A placeholder class to represent a text line with bounding box attributes.
Attributes
----------
x0 : float
The x-coordinate of the left edge of the text line.
x1 : float
The x-coordinate of the right edge of the text line.
y0 : float
The y-coordinate of the bottom edge of the text line.
y1 : float
The y-coordinate of the top edge of the text line.
"""
__slots__ = ("x0", "y0", "x1", "y1")
def __init__(self, x0: float, y0: float, x1: float, y1: float):
self.x0 = x0
self.y0 = y0
self.x1 = x1
self.y1 = y1
def column_spread(left, right, col_anchors):
"""Get the number of columns crossed by a segment [left, right]."""
index_left = 0
while index_left < len(col_anchors) and col_anchors[index_left] < left:
index_left += 1
index_right = index_left
while index_right < len(col_anchors) and col_anchors[index_right] < right:
index_right += 1
return index_right - index_left
def find_closest_tls( # noqa: C901
bbox: list[float], tls: list[LTTextLineHorizontal | LTTextLineVertical]
) -> dict[str, LTTextLineHorizontal | LTTextLineVertical | None]:
"""Search for textlines that are closest to the bounding box but outside in all four directions.
Parameters
----------
bbox : list of float
A list containing the coordinates of the bounding box in the order
[left, bottom, right, top].
tls : list of TextLine
A list of textline objects to search for the closest lines.
Returns
-------
dict
A dictionary with keys "left", "right", "top", and "bottom",
each mapping to the closest textline object in that direction or None if not found.
"""
left: LTTextLineHorizontal | LTTextLineVertical | None = None
right: LTTextLineHorizontal | LTTextLineVertical | None = None
top: LTTextLineHorizontal | LTTextLineVertical | None = None
bottom: LTTextLineHorizontal | LTTextLineVertical | None = None
(bbox_left, bbox_bottom, bbox_right, bbox_top) = bbox
for textline in tls:
if textline.x1 < bbox_left:
# Left: check if it overlaps horizontally
if textline.y0 > bbox_top or textline.y1 < bbox_bottom:
continue
if left is None or left.x1 < textline.x1:
left = textline
elif bbox_right < textline.x0:
# Right: check if it overlaps horizontally
if textline.y0 > bbox_top or textline.y1 < bbox_bottom:
continue
if right is None or right.x0 > textline.x0:
right = textline
else:
# Either bottom or top: must overlap vertically
if textline.x0 > bbox_right or textline.x1 < bbox_left:
continue
if textline.y1 < bbox_bottom:
# Bottom
if bottom is None or bottom.y1 < textline.y1:
bottom = textline
elif bbox_top < textline.y0:
# Top
if top is None or top.y0 > textline.y0:
top = textline
return {
"left": left,
"right": right,
"top": top,
"bottom": bottom,
}
def _extract_zones(
all_above: list[Any], max_v_gap: float, top: float
) -> tuple[list[list[float]], float]:
"""Extract zones from the textlines above the body bbox.
Parameters
----------
all_above : List[Any]
Textlines that are above the bounding box.
max_v_gap : float
The maximum vertical gap allowed.
top : float
The current top boundary.
Returns
-------
Tuple[List[List[float]], float]
The extracted zones and the new top boundary.
"""
tls_in_new_row = []
pushed_up = True
while pushed_up:
pushed_up = False
for (
textline
) in all_above.copy(): # Copy to avoid modifying the list during iteration
if textline.y0 < top:
# The bottom of this element is within our row so we add it.
tls_in_new_row.append(textline)
all_above.remove(textline)
if textline.y1 > top:
# If the top of this element raises our row's
# band, we'll need to keep on searching for
# overlapping items
top = textline.y1
pushed_up = True
return [[textline.x0, textline.x1] for textline in tls_in_new_row], top
def _merge_zones(zones: list[list[float]]) -> list[list[float]]:
"""Merge overlapping zones into consolidated zones.
Parameters
----------
zones : List[List[float]]
A list of zones defined by their x-coordinates.
Returns
-------
List[List[float]]
A list of merged zones.
"""
zones.sort(key=lambda z: z[0])
merged_zones: list[list[float]] = []
for zone in zones:
if not merged_zones or merged_zones[-1][1] < zone[0]:
merged_zones.append(zone)
else:
merged_zones[-1][1] = max(merged_zones[-1][1], zone[1]) # Merge the zones
return merged_zones
def search_header_from_body_bbox(
body_bbox: tuple[float, float, float, float],
textlines: list[Any],
col_anchors: list[float],
max_v_gap: float,
) -> tuple[float, float, float, float]:
"""Expand a bounding box (bbox) vertically by looking for plausible headers.
The core algorithm is based on fairly strict alignment of text. It works
for the table body but might fail on table headers since they tend to be
in a different font, alignment (e.g., vertical), etc. This method evaluates
the area above the table body's bbox for characteristics of a table header:
close to the top of the body, with cells that fit within the horizontal bounds identified.
Parameters
----------
body_bbox : Tuple[float, float, float, float]
The bounding box of the body in the format (left, bottom, right, top).
textlines : List[Any]
A list of textline objects, each with properties x0, x1, y0, and y1.
col_anchors : List[float]
A list of x-coordinates representing column anchors.
max_v_gap : float
The maximum vertical gap allowed to consider a header plausible.
Returns
-------
Tuple[float, float, float, float]
The expanded bounding box in the format (left, bottom, right, top).
"""
new_bbox = body_bbox
(left, bottom, right, top) = body_bbox
zones: list[list[float]] = []
keep_searching = True
while keep_searching:
keep_searching = False
# a/ first look for the closest text element above the bbox.
# It will be the anchor for a possible new row.
closest_above = None
all_above = []
for textline in textlines:
# higher than the table, >50% within its bounds
textline_center = 0.5 * (textline.x0 + textline.x1)
if textline.y0 > top and left < textline_center < right:
all_above.append(textline)
closest_above = None
all_above = [
tl
for tl in textlines
if tl.y0 > top and left < 0.5 * (tl.x0 + tl.x1) < right
]
if all_above:
closest_above = min(all_above, key=lambda tl: tl.y0)
if closest_above and closest_above.y0 < top + max_v_gap:
# We have a candidate cell that is within the correct
# vertical band, and directly above the table. Starting from
# this anchor, we list all the textlines within the same row.
zones, top = _extract_zones(all_above, max_v_gap, closest_above.y1)
# Starting from the right, if two zones overlap horizontally, merge them
merged_zones = _merge_zones(zones)
max_spread = max(
column_spread(zone[0], zone[1], col_anchors) for zone in merged_zones
)
# Accept textlines that cross columns boundaries, as long as they
# cross less than MAX_COL_SPREAD_IN_HEADER, and half the number of
# columns.
# This is to avoid picking unrelated paragraphs.
if max_spread <= min(
MAX_COL_SPREAD_IN_HEADER, math.ceil(len(col_anchors) / 2)
):
# Combined, the elements we've identified don't cross more
# than the authorized number of columns.
# We're trying to avoid
# 0: <BAD: Added header spans too broad>
# 1: <A1> <B1> <C1> <D1> <E1>
# 2: <A2> <B2> <C2> <D2> <E2>
# if len(zones) > TEXTEDGE_REQUIRED_ELEMENTS:
new_bbox = (left, bottom, right, top)
# At this stage we've identified a plausible row (or the
# beginning of one).
keep_searching = True
return new_bbox
class AlignmentCounter:
"""
For a given textline, represent all other textlines aligned with it.
A textline can be vertically aligned with others if their bbox match on
left, right, or middle coord, and horizontally aligned if they match top,
bottom, or center coord.
"""
def __init__(self):
self.alignment_to_occurrences = {}
for alignment in ALL_ALIGNMENTS:
self.alignment_to_occurrences[alignment] = []
def __getitem__(self, key):
"""Get the value of a property to the given value."""
return self.alignment_to_occurrences[key]
def __setitem__(self, key, value):
"""Set the value of a property to the given value."""
self.alignment_to_occurrences[key] = value
return value
def max_alignments(self, alignment_ids=None):
"""Get the alignment dimension with the max number of textlines."""
alignment_ids = alignment_ids or self.alignment_to_occurrences.keys()
alignment_items = map(
lambda alignment_id: (
alignment_id,
self.alignment_to_occurrences[alignment_id],
),
alignment_ids,
)
return max(alignment_items, key=lambda item: len(item[1]))
def max_v(self):
"""Tuple (alignment_id, textlines) of largest vertical row."""
# Note that the horizontal alignments (left, center, right) are aligned
# vertically in a column, so max_v is calculated by looking at
# horizontal alignments.
return self.max_alignments(HORIZONTAL_ALIGNMENTS)
def max_h(self):
"""Tuple (alignment_id, textlines) of largest horizontal col."""
return self.max_alignments(VERTICAL_ALIGNMENTS)
def max_v_count(self):
"""Maximum vertical count.
Return the maximum number of alignments along
one of the vertical axis (left/right/middle).
"""
return len(self.max_v()[1])
def max_h_count(self):
"""Maximum horizontal count.
Return the maximum number of alignments along
one of the horizontal axis (bottom/top/center).
"""
return len(self.max_h()[1])
def alignment_score(self):
"""Return the alignment score.
We define the alignment score of a textline as the product of the
number of aligned elements - 1. The -1 is to avoid favoring
singletons on a long line.
"""
return (self.max_v_count() - 1) * (self.max_h_count() - 1)
class TextNetworks(TextAlignments):
"""Text elements connected by vertical AND horizontal alignments.
The alignment dict has six keys based on the hor/vert alignments,
and each key's value is a list of camelot.core.TextAlignment objects.
"""
def __init__(self):
super().__init__(ALL_ALIGNMENTS)
# For each textline, dictionary "alignment type" to
# "number of textlines aligned"
self._textline_to_alignments = {}
def _update_alignment(self, alignment, coord, textline):
alignment.register_aligned_textline(textline, coord)
def _register_all_text_lines(self, textlines):
"""Add all textlines to our network repository to identify alignments."""
# Identify all the alignments
for textline in textlines:
if len(textline.get_text().strip()) > 0:
self._register_textline(textline)
def _compute_alignment_counts(self):
"""Build a dictionary textline -> alignment object."""
for align_id, textedges in self._text_alignments.items():
for textedge in textedges:
for textline in textedge.textlines:
alignments = self._textline_to_alignments.get(textline, None)
if alignments is None:
alignments = AlignmentCounter()
self._textline_to_alignments[textline] = alignments
alignments[align_id] = textedge.textlines
def remove_unconnected_edges(self):
"""Remove elements which are only connected on one dimension.
Elements should be connected to others both vertically
and horizontally.
"""
# Initialize a flag to indicate if any singletons were removed
removed_singletons = True
while removed_singletons:
removed_singletons = False
for text_alignments in self._text_alignments.values():
# For each alignment edge, remove items if they are singletons
# either horizontally or vertically
for text_alignment in text_alignments:
# Create a list to hold textlines to be removed
to_remove = []
for i in range(len(text_alignment.textlines)):
textline = text_alignment.textlines[i]
alignments = self._textline_to_alignments[textline]
# Check if the textline is a singleton in either direction
if (
alignments.max_h_count() <= 1
or alignments.max_v_count() <= 1
):
to_remove.append(i) # Mark for removal
# Remove items after iterating to avoid modifying the list during iteration
for index in reversed(to_remove):
del text_alignment.textlines[index]
removed_singletons = True
# Clear the alignment cache
self._textline_to_alignments = {}
self._compute_alignment_counts() # Recompute alignment counts after removals
def most_connected_textline(self):
"""Retrieve the textline that is most connected."""
# Find the textline with the highest alignment score, with a tie break
# to prefer textlines further down in the table. Starting the search
# from the table's bottom allows the algo to collect data on more cells
# before going to the header, typically harder to parse.
return max(
self._textline_to_alignments.keys(),
key=lambda textline: (
self._textline_to_alignments[textline].alignment_score(),
-textline.y0,
-textline.x0,
),
default=None,
)
def compute_plausible_gaps(self):
"""Evaluate plausible gaps between cells.
Both horizontally and vertically
based on the textlines aligned with the most connected textline.
Returns
-------
gaps_hv : tuple
(horizontal_gap, vertical_gap) in pdf coordinate space.
"""
# Determine the textline that has the most combined
# alignments across horizontal and vertical axis.
most_aligned_tl = self.most_connected_textline()
if most_aligned_tl is None:
return None
# Retrieve the list of textlines it's aligned with, across both axes
best_alignment = self._textline_to_alignments.get(most_aligned_tl)
if best_alignment is None:
return None
# Extract the reference textlines
__, ref_h_textlines = best_alignment.max_h()
__, ref_v_textlines = best_alignment.max_v()
# Ensure we have enough textlines for calculations
if len(ref_v_textlines) <= 1 or len(ref_h_textlines) <= 1:
return None
# Sort textlines based on their positions
h_textlines = sorted(ref_h_textlines, key=lambda textline: textline.x0)
v_textlines = sorted(ref_v_textlines, key=lambda textline: textline.y0)
# Calculate gaps between textlines
h_gaps = np.array(
[
h_textlines[i].x0 - h_textlines[i - 1].x0
for i in range(1, len(h_textlines))
]
)
v_gaps = np.array(
[
v_textlines[i].y0 - v_textlines[i - 1].y0
for i in range(1, len(v_textlines))
]
)
# If no gaps are found, return None
if h_gaps.size == 0 or v_gaps.size == 0:
return None
# Calculate the 75th percentile gaps using numpy for efficiency
gaps_hv = (
2.0 * np.percentile(h_gaps, 75),
2.0 * np.percentile(v_gaps, 75),
)
return gaps_hv
def search_table_body(
self,
gaps_hv: tuple[float, float],
parse_details: list[Any] | None,
) -> list[float] | None:
"""Build a candidate bounding box for the body of a table using network algorithm.
Parameters
----------
gaps_hv : tuple of float
The maximum distance allowed to consider surrounding lines/columns
as part of the same table.
parse_details : list
Optional parameter list, in which to store extra information
to help later visualization of the table creation.
Returns
-------
list of float or None
The bounding box of the table body as a list of four floats
[x0, y0, x1, y1] or None if not enough textlines are found.
"""
most_aligned_tl = self.most_connected_textline()
max_h_gap, max_v_gap = gaps_hv
parse_details_search: dict[str, Any] | None = None
if parse_details is not None:
parse_details_search = {
"max_h_gap": max_h_gap,
"max_v_gap": max_v_gap,
"iterations": [],
}
parse_details.append(parse_details_search)
bbox = [
most_aligned_tl.x0,
most_aligned_tl.y0,
most_aligned_tl.x1,
most_aligned_tl.y1,
]
tls_search_space = list(self._textline_to_alignments.keys())
tls_search_space.remove(most_aligned_tl)
tls_in_bbox = [most_aligned_tl]
last_bbox = None
last_cols_bounds = [(most_aligned_tl.x0, most_aligned_tl.x1)]
while last_bbox != bbox:
if parse_details_search is not None: # is not None
parse_details_search["iterations"].append(bbox)
last_bbox = bbox
closest_tls = find_closest_tls(bbox, tls_search_space)
bbox, last_cols_bounds, tls_in_bbox, tls_search_space = self.expand_bbox(
bbox,
closest_tls,
tls_search_space,
gaps_hv,
last_cols_bounds,
tls_in_bbox,
)
if len(tls_in_bbox) >= MINIMUM_TEXTLINES_IN_TABLE:
return bbox
return None
def expand_bbox(
self,
bbox: list[float],
closest_tls: dict[str, Any],
tls_search_space: list[Any],
gaps_hv: tuple[float, float],
last_cols_bounds: list[Any],
tls_in_bbox: list[Any],
) -> tuple[list[float], list[Any], list[Any], list[Any]]:
"""Expand the bounding box based on closest textlines.
Parameters
----------
bbox : list of float
The current bounding box.
closest_tls : dict
The closest textlines found.
tls_search_space : list
The list of textlines available for searching.
gaps_hv : tuple of float
The maximum allowed horizontal and vertical gaps.
last_cols_bounds : list of tuple
The boundaries of the last found columns.
tls_in_bbox : list
The textlines currently in the bounding box.
Returns
-------
tuple
The updated bounding box, column boundaries, textlines in bbox, and search space.
"""
cand_bbox = bbox.copy()
for direction, textline in closest_tls.items():
if textline is None or not self.can_expand_bbox(
cand_bbox, textline, gaps_hv, direction
):
continue
expanded_cand_bbox = self.get_expanded_bbox(cand_bbox, textline, direction)
new_tls = text_in_bbox(expanded_cand_bbox, tls_search_space)
tls_in_new_box = new_tls + tls_in_bbox
if not self.is_valid_expansion(direction, tls_in_new_box, last_cols_bounds):
continue
bbox = cand_bbox = list(bbox_from_textlines(tls_in_new_box))
last_cols_bounds = find_columns_boundaries(tls_in_new_box)
tls_in_bbox.extend(new_tls)
self.update_search_space(tls_search_space, new_tls)
return bbox, last_cols_bounds, tls_in_bbox, tls_search_space
def can_expand_bbox(
self,
cand_bbox: list[float],
textline: Any,
gaps_hv: tuple[float, float],
direction: str,
):
# -> bool TODO
# typeguard.TypeCheckError: the return value (numpy.bool_) is not an instance of bool
"""Check if the bounding box can be expanded in the given direction.
Parameters
----------
cand_bbox : list of float
The candidate bounding box.
textline : Any
The textline to check against.
gaps_hv : tuple of float
The maximum allowed horizontal and vertical gaps.
direction : str
The direction to check for expansion.
Returns
-------
bool
True if the bounding box can be expanded, otherwise False.
"""
if direction == "left":
return cand_bbox[0] - textline.x1 <= gaps_hv[0]
elif direction == "right":
return textline.x0 - cand_bbox[2] <= gaps_hv[0]
elif direction == "bottom":
return cand_bbox[1] - textline.y1 <= gaps_hv[1]
elif direction == "top":
return textline.y0 - cand_bbox[3] <= gaps_hv[1]
return False
def get_expanded_bbox(
self, cand_bbox: list[float], textline: Any, direction: str
) -> list[float]:
"""Get the expanded bounding box based on the textline in the specified direction.
Parameters
----------
cand_bbox : list of float
The candidate bounding box.
textline : Any
The textline to expand the bounding box with.
direction : str
The direction to expand.
Returns
-------
list of float
The expanded bounding box.
"""
expanded_cand_bbox = cand_bbox.copy()
if direction == "left":
expanded_cand_bbox[0] = textline.x0
elif direction == "right":
expanded_cand_bbox[2] = textline.x1
elif direction == "bottom":
expanded_cand_bbox[1] = textline.y0
elif direction == "top":
expanded_cand_bbox[3] = textline.y1
return expanded_cand_bbox
def is_valid_expansion(
self,
direction: str,
tls_in_new_box: list[Any],
last_cols_bounds: list[Any],
) -> bool:
"""Check if the new expansion is valid.
Parameters
----------
direction : str
The direction of expansion.
tls_in_new_box : list
The textlines in the new bounding box.
last_cols_bounds : list of tuple
The boundaries of the last found columns.
Returns
-------
bool
True if the expansion is valid, otherwise False.
"""
cols_bounds = find_columns_boundaries(tls_in_new_box)
return not (
direction in ["bottom", "top"] and len(cols_bounds) < len(last_cols_bounds)
)
def update_search_space(
self, tls_search_space: list[Any], new_tls: list[Any]
) -> None:
"""Update the search space by removing textlines in the new bounding box.
Parameters
----------
tls_search_space : list
The current search space of textlines.
new_tls : list
The new textlines added to the bounding box.
"""
for i in range(len(tls_search_space) - 1, -1, -1):
textline = tls_search_space[i]
if textline in new_tls:
del tls_search_space[i]
def generate(self, textlines: list[Any]) -> None:
"""Generate the text edge dictionaries based on the input textlines.
Parameters
----------
textlines : list
List of textline objects to be processed.
"""
self._register_all_text_lines(textlines)
self._compute_alignment_counts()
[docs]
class Network(TextBaseParser):
"""Network method looks for spaces between text to parse the table.
If you want to specify columns when specifying multiple table
areas, make sure that the length of both lists are equal.
Parameters
----------
table_regions : list, optional (default: None)
List of page regions that may contain tables of the form x1,y1,x2,y2
where (x1, y1) -> left-top and (x2, y2) -> right-bottom
in PDF coordinate space.
table_areas : list, optional (default: None)
List of table area strings of the form x1,y1,x2,y2
where (x1, y1) -> left-top and (x2, y2) -> right-bottom
in PDF coordinate space.
columns : list, optional (default: None)
List of column x-coordinates strings where the coordinates
are comma-separated.
split_text : bool, optional (default: False)
Split text that spans across multiple cells.
flag_size : bool, optional (default: False)
Flag text based on font size. Useful to detect
super/subscripts. Adds <s></s> around flagged text.
strip_text : str, optional (default: '')
Characters that should be stripped from a string before
assigning it to a cell.
edge_tol : int, optional (default: 50)
Tolerance parameter for extending textedges vertically.
row_tol : int, optional (default: 2)
Tolerance parameter used to combine text vertically,
to generate rows.
column_tol : int, optional (default: 0)
Tolerance parameter used to combine text horizontally,
to generate columns.
"""
def __init__(
self,
table_regions=None,
table_areas=None,
columns=None,
flag_size=False,
split_text=False,
strip_text="",
edge_tol=None,
row_tol=2,
column_tol=0,
debug=False,
**kwargs,
):
super().__init__(
"network",
table_regions=table_regions,
table_areas=table_areas,
columns=columns,
flag_size=flag_size,
split_text=split_text,
strip_text=strip_text,
edge_tol=edge_tol,
row_tol=row_tol,
column_tol=column_tol,
debug=debug,
)
def _generate_table_bbox(self):
user_provided_bboxes = self._get_user_provided_bboxes()
filtered_textlines = list(
self._get_filtered_textlines()
) # Convert to list if not already
textlines = list(filtered_textlines) if filtered_textlines else []
textlines_processed = (
set()
) # Use a set for O(1) average time complexity for lookups
self.table_bbox_parses = {}
if self.parse_details is not None:
self.parse_details["network_searches"] = []
self.parse_details["bbox_searches"] = []
self.parse_details["col_searches"] = []
while textlines: # Continue while there are textlines to process
bbox_body, gaps_hv = self._get_bbox_body(user_provided_bboxes, textlines)
if bbox_body is None:
break # Exit the loop if no more bbox_body can be generated
tls_in_bbox = textlines_overlapping_bbox(bbox_body, textlines)
if not tls_in_bbox: # If there are no textlines in the bbox, break
break
cols_boundaries = find_columns_boundaries(tls_in_bbox)
cols_anchors = boundaries_to_split_lines(cols_boundaries)
bbox_full = self._get_full_bbox(
user_provided_bboxes,
bbox_body,
tls_in_bbox,
textlines,
cols_anchors,
gaps_hv,
)
if isinstance(bbox_full, list):
bbox_full = tuple(bbox_full)
table_parse = {
"bbox_body": bbox_body,
"cols_boundaries": cols_boundaries,
"cols_anchors": cols_anchors,
"bbox_full": bbox_full,
}
self.table_bbox_parses[bbox_full] = table_parse
if self.parse_details is not None:
self.parse_details["col_searches"].append(table_parse)
# Update processed textlines
textlines_processed.update(tls_in_bbox)
# Filter out processed textlines
textlines = [tl for tl in textlines if tl not in textlines_processed]
# Early exit if all textlines have been processed
if not textlines: # Check if there are no more textlines to process
break
def _get_bbox_body(self, user_provided_bboxes, textlines):
if user_provided_bboxes is not None:
if len(user_provided_bboxes) > 0:
return (
user_provided_bboxes.pop(),
None,
) # Return None for gaps_hv if using user bbox
text_network = TextNetworks()
text_network.generate(textlines)
text_network.remove_unconnected_edges()
gaps_hv = text_network.compute_plausible_gaps()
if gaps_hv is None:
return None, None # End the loop if no gaps can be computed
edge_tol_hv = (
gaps_hv[0],
gaps_hv[1] if self.edge_tol is None else self.edge_tol,
)
bbox_body = text_network.search_table_body(
edge_tol_hv,
parse_details=(
self.parse_details["bbox_searches"] if self.parse_details else None
),
)
if self.parse_details is not None:
self.parse_details["network_searches"].append(text_network)
return bbox_body, gaps_hv # Return the computed bbox_body and gaps_hv
def _get_full_bbox(
self,
user_provided_bboxes,
bbox_body,
tls_in_bbox,
textlines,
cols_anchors,
gaps_hv,
):
if user_provided_bboxes is not None:
if len(user_provided_bboxes) > 0:
return bbox_body # Use the existing bbox_body directly
else:
bbox_body_from_tls = bbox_from_textlines(tls_in_bbox)
if bbox_body_from_tls is not None:
return search_header_from_body_bbox(
bbox_body_from_tls, textlines, cols_anchors, gaps_hv[1]
)
return bbox_body
def _get_filtered_textlines(self):
all_textlines = [
t
for t in self.horizontal_text + self.vertical_text
if len(t.get_text().strip()) > 0
]
return self._apply_regions_filter(all_textlines)
def _get_user_provided_bboxes(self):
if self.table_areas is not None:
return [bbox_from_str(area_str) for area_str in self.table_areas]
return None
def _generate_columns_and_rows(self, bbox, user_cols):
# select elements which lie within table_bbox
self.t_bbox = text_in_bbox_per_axis(
bbox, self.horizontal_text, self.vertical_text
)
all_tls = list(
sorted(
filter(
lambda textline: len(textline.get_text().strip()) > 0,
self.t_bbox["horizontal"] + self.t_bbox["vertical"],
),
key=lambda textline: (-textline.y0, textline.x0),
)
)
text_x_min, text_y_min, text_x_max, text_y_max = bbox_from_textlines(all_tls)
# FRHTODO:
# This algorithm takes the horizontal textlines in the bbox, and groups
# them into rows based on their bottom y0.
# That's wrong: it misses the vertical items, and misses out on all
# the alignment identification work we've done earlier.
rows_grouped = self._group_rows(all_tls, row_tol=self.row_tol)
rows = self._join_rows(rows_grouped, text_y_max, text_y_min)
if user_cols is not None:
cols = [text_x_min] + user_cols + [text_x_max]
cols = [(cols[i], cols[i + 1]) for i in range(0, len(cols) - 1)]
else:
# Check if the bounding box exists as a key in the dictionary
if bbox in self.table_bbox_parses:
parse_details = self.table_bbox_parses[bbox]
col_anchors = parse_details["cols_anchors"]
cols = list(
map(
lambda idx: [col_anchors[idx], col_anchors[idx + 1]],
range(0, len(col_anchors) - 1),
)
)
else:
# Handle the KeyError gracefully by returning empty lists
# or by performing alternative logic, such as using a default
# bounding box or skipping the table.
print(f"Warning: Bounding box {bbox} not found in table_bbox_parses.")
return [], [], [], [] # Return empty lists for cols, rows, v_s, h_s
return cols, rows, None, None